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Abstract

Angles-only (or bearings-only) navigation involves determining position, velocity, or orien-

tation information for an observer using the apparent directions or motions of objects at finite

distances. Angles-only navigation covers a broad range of applications, and is generally imple-

mented through a Kalman filter that uses imaging and other information to differentially adjust

the values of the navigation parameters (state vector) at each incremental step of the observer’s

computed motion.

This paper presents an algorithm for angles-only navigation that is a closed-form solution for

both position and velocity that does not require any prior estimate of the observer’s position or

motion. It is least-squares-based triangulation generalized to a moving observer, involving only

angular observations of objects with known coordinates.

The algorithm can be applied to any situation where foreground objects are observed against

background objects, and coordinates are available for both. A proposed application would use the

angular positions of GPS satellites observed optically against a star background. Such a system

could provide a supplement to ordinary GPS navigation, as well as supplying a precise absolute

attitude reference.

INTRODUCTION

This paper outlines the geometry and corresponding mathematics of a particular type of angles-

only navigation. In angles-only navigation — also known as bearings-only navigation — position,
∗Current address: 35 Oak Street, Colora, MD 21917; e-mail gk@gkaplan.us.
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velocity, or orientation information for an observer is passively obtained from measurements of the

apparent angles, or angular rates, of objects at finite (but generally unknown) distances. Despite

its name, angles-only navigation is often used to augment other means of navigation, such as dead

reckoning, inertial, or GPS. As a simple example, a ship’s navigator can determine a line of position

from the measured bearing of an identifiable navigation aid or landmark; two such lines of position

will cross at the ship’s position. In more sophisticated forms, it has been applied to spacecraft

maneuvering [1, 2], aircraft navigation [3, 4, 5, 6], and position determination for mobile robots

[7, 8, 9]. Advances in electronic imaging and real-time image analysis capabilities over the last few

decades have considerably expanded the scope of uses, and the literature base has blossomed, with

significant contributions from fields such as optics, computer vision, robotics, artificial intelligence,

and even animal navigation. The topic is probably too broad for a review to be even possible, and

the references cited above are just a tiny sample of the papers published.

In the most common implementations of angles-only navigation, measurements from a scene

recorded by an imaging system serve as input, along with data from other sensors, to a navigational

Kalman filter that continually updates the observer’s state vector (e.g, position, velocity, and

attitude); see, for example, [10]. For this purpose, the sensitivity of the scene elements and other

sensor data to a change of state are linearized about an estimated state, which is a computational

projection based on previous data. The differences between the measurements and their expected

values provide information to correct the estimated state, and the cycle repeats. A somewhat

different kind of predictive stepwise filter for angles-only measurements, yielding position, velocity,

attitude, and rotation, was published in [11].

In this paper, however, we consider how to determine, ab initio, both the position and velocity

vectors of an observer (e.g., an imaging system) using a sequence of angular measurements that may

be distributed over a considerable period of time. The measurements are of the apparent directions

of identifiable objects with known coordinates. The scheme is “absolute” in the sense that the

angular measurements, rather than being relative to some unknown directions, are expressed in

the reference system that is used for the object coordinates (and the navigation solution). This

considerably simplifies the problem by obviating the need for a simultaneous attitude solution or

any kind of object-space-image-space mapping. Although at first thought this situation may seem
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atypical, the development remains pertinent to many common applications. For example, it is

relevant to any system that captures scenes in which foreground features appear against background

features, and geodetic coordinates can be obtained for both near and far objects.

In contrast to the Kalman filter approach, the algorithm presented here does not require any

previous estimate of position or motion, and is of closed form, not stepwise or iterative. It is a

type of 3-D triangulation applied to a moving observer, with angular observations taken at various

positions along the observer’s track. The observations are assumed to be uncorrelated and to have

normally distributed random errors but no significant systematic errors. The solution minimizes

the effects of errors in both the observations and the assumed object coordinates in a least-squares

sense. Since the algorithm requires no information not related to the angular observations, it may

be useful for startup situations or any other circumstances in which current position and velocity

data are unreliable or not available; the scheme requires only that the objects observed can be

identified and their coordinates retrieved. The algorithm can also provide a check on stepwise

navigation filters. The development is based on a straightforward geometric construction and the

solutions are robust for reasonable sets of observations.

What is presented here is not, of course, the first closed-form solution to an angles-only naviga-

tion problem. In fact, the solution for the fixed-observer case was published (in a different kind of

notation) in an appendix to the classical text Geodesy by Bomford [12]. Two of the robotics papers

mentioned above [7, 9] present closed-form solutions for a fixed observer using relative bearing

measurements in a 2-D environment. The main contribution of this paper is in presenting a closed-

form solution for both position and velocity in a 3-D environment. The development includes a

correction term for the curvature of the Earth, so that observations can be collected over extended

tracks.

The paper is organized by sections as follows: First, some applications of the method are

described. Second, the basic concepts of the observations and their representation as vectors are

described. Next, two navigation solutions are presented, one for a fixed observer and the other for

a moving observer. The next two sections consider the propagation of error and the term in the

solution that corrects for the curvature of the Earth. The specific possibility of using Earth satellites

observed optically (or in the near-IR) against background stars as the source of observations for
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this method is described in some detail. The results of a numerical simulation of such an observing

system are presented and, finally, the salient ponts of the paper are summarized.

APPLICATIONS

The method described in this paper was developed for a proposed shipboard automated celestial

observing system that would augment GPS with absolute orientation information and serve as

a standalone positioning system in case of GPS denial. The chosen observing mode involved

artificial Earth satellites observed optically or in a near-infrared band against background stars.

The algorithm described here was initially developed simply to provide quick estimates of the likely

errors of such a system, under various conditions, even though the eventual navigation solution was

to be obtained from a Kalman filter involving multiple sensor inputs. However, the method has

value in itself by providing a stand-alone navigation solution from the satellite observations in the

absence of any other information. The obvious next question was whether the algorithm might be

applied in other contexts.

As it turns out, the mathematics provided here could be applied to any situation in which the

directions to identifiable objects can be measured with respect to more distant objects, so long as

the coordinates of both foreground and background objects are known. When a foreground and a

background object appear to line up from the point of view of the observer, the observed direction

vector is simply the normalized difference of the position vectors of the two objects. Using that

type of observation, the algorithm therefore has wide application to any kind of vehicle that has

an imaging system, even if not of the highest quality; the accuracy depends only on the resolution

of the image, not on any external angular calibration or object-space-image-space transformation.

For objects seen near the horizontal plane, the apparent alignment of objects in the vertical

direction suffices — for example, as seen from a ship, a buoy may appear to pass underneath

a distant water tower — if the height of the observer is not of interest (i.e., if the 3-D problem

effectively collapses to 2-D). A series of time-tagged images of aligned objects, for which the latitudes

and longitudes are known, would allow for a solution for the surface track of the vehicle. The method

could be applied to ordinary ship piloting, which was demonstrated by the author using images

of shore objects taken during a small-boat trip up the Chesapeake Bay and into Baltimore harbor
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— see Figure 1 for examples. The images were taken with an inexpensive hand-held camera and

timed only to the nearest minute using the camera’s internal clock. For each image, coordinates

of the foreground and background objects were subsequently obtained from Google Earth or the

USCG Light List, and a solution for a portion of the boat’s track was computed using the method

described in this paper. Despite the primitive nature of the experiment, the solution was close to

that obtained from a straight-line fit of the recorded GPS positions of the boat, and the residual

errors in both cases (748 and 629 meters RMS, respectively) were largely the result of the boat’s

deviations from the modeled tracks — an important consideration in the practical applicability of

the method that will be discussed later. This crude exercise showed, however, that the method

might be useful for piloting in areas that are well mapped (or for which good satellite imagery is

available) but lack reliable navigational aids.

Fig. 0 — Images of aligned foreground and background objects in the Patapsco

River outside Baltimore. Each image yields a direction vector (line of position) in

the WGS-84 system, based on the coordinates of the two objects.
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That means that the method would also apparently work well for navigating robotic landers

across the surfaces of other solar system bodies using the on-board imaging system. All that

is needed is a database of identifiable terrain features and their coordinates. In fact, it could be

applied to interplanetary space navigation (although not at high accuracy) if the apparent directions

of several relatively nearby solar system objects were observed against the star background.

OBSERVATIONS, VECTORS, COORDINATE SYSTEMS

This paper uses the convention that vectors of arbitrary length are written as boldface upper-case

letters and unit vectors are written as boldface lower-case letters. For example, z would be the unit

vector in the direction of Z.

The algorithm in this paper is based on observations of the directions of identifiable objects,

with known coordinates, from the point of view of an observer whose own coordinates are to be

determined. For each object observed, then, two kinds of information are required: the predeter-

mined coordinates of the object, represented by the position vector P; and the the observation

itself, represented by the direction (unit) vector d. In the absence of errors, the observer must

be somewhere on a line of position (LOP) in 3-space given by the equation X = P + r d, where

X is the position of an arbitrary point along the line and r is a scalar that can take on any real

value. The components of the vectors X and P and the scalar r have units of length, while d is

dimensionless. We assume that X, P, and d may be functions of time; for a moving target, the

time series of vectors P(t) is referred to as its ephemeris. See Figure 1.
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Observer

Object

True direction
toward object

Observed direction, d,
toward object

LO
P Line of position X = P + rd is

parallel to observed direction of
object and passes through
assumed position of object

Assumed position of object, P,
based on predetermined
coordinates

Computed position of
observer obtained by
minimizing sum of δ2

over all LOPs

δ

Fig. 1 — Geometry of a single observation. Both the observed direction of the object

and the object’s coordinates are assumed to have some error.

We require that P and d are given in, or reduced to, a common coordinate system. For some

kinds of observations, this will come about naturally. For example, if a target object is observed

against a background object, and both have coordinates in the same database, then the direction

vector is simply the difference between the known position vectors of the background object and

the target, normalized to unit length. The direction vector is thereby expressed in the coordinate

system used for the positions of all the landmarks. A more complicated case is that of artificial Earth

satellites imaged against the star background, in which the observations and object coordinates are

naturally expressed in different kinds of coordinates and must be reduced to a common system.

This is discussed more fully in the section on applications.

The navigation solution vectors will be expressed in the coordinate system used for the object

coordinates and observations. Effectively, the set of assumed coordinates for all the objects observed

define the reference system for the solution. Since the solution is based on geometry, not dynamics,
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there is no requirement that the reference system be inertial. In the most common case, in fact,

the reference system will be geodetic (Earth-fixed) and therefore not inertial.

NAVIGATION SOLUTION

We will start with an observer that is fixed with respect to the objects he is observing, at location

X. Given an ensemble of n observations di of objects at known positions Pi, respectively, the

least-squares estimate for X is given by
n− [di1

2] −[di1di2 ] −[di1di3 ]

−[di1di2 ] n− [di2
2] −[di2di3 ]

−[di1di3 ] −[di2di3 ] n− [di3
2]




x1

x2

x3

 =


[Pi1 − (di ·Pi)di1 ]

[Pi2 − (di ·Pi)di2 ]

[Pi3 − (di ·Pi)di3 ]

 (1)

where Pi = (Pi1 ,Pi2 ,Pi3), di = (di1 , di2 ,di3), X = (x1, x2, x3), and the square brackets indicate a

summation over all n observations, i.e., [. . .] represents
n∑

i=1

. . ..

This is a system of three scalar equations in three unknowns, x1, x2, and x3, the components

of the observer’s position vector. These three equations are equivalent to Equation (C.29) in [12].

We have minimized the sum D =
∑

i δ
2
i , where each δi represents the distance of line of position i,

defined by the observation i, from X, the computed position of the observer. We imagine all of

the LOPs converging in a small volume of 3-space; X is in the center of this volume, with “center”

precisely defined by the least-squares criterion.

There is a brute-force solution to Equation (1) from substitution. If we re-cast (1) as
A B C

B D E

C E F




x1

x2

x3

 =


Q1

Q2

Q3


with A = n− [di1

2], B = −[di1di2 ], etc., then the solution is

x3 =
(CD −BE)(CQ1 −AQ3)− (BC −AE)(CQ2 −BQ3)

(CD −BE)(C2 −AF )− (BC −AE)(CE −BF )

x2 =
CQ2 −BQ3 − (CE −BF )x3

CD −BE
(2)

x1 =
Q1 −Bx2 − Cx3

A
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Because this development applies only to a fixed observer, or n simultaneous observations, it is of

limited use for navigation. For simplicity, we have also not considered weighting the observations,

although providing for that is straightforward, and is described at the end of this section.

The more useful case is that of a moving observer and non-simultaneous observations. Let us

represent the observer’s trajectory by X(t) = X(t0) + V(t0) t+ f(t)x0, where X(t0) and V(t0) are

the observer’s position and velocity, respectively, at time t0. In the third term, x0 is the unit vector

in the direction X(t0) and f(t) is a scalar function with units of distance. The time t is measured

from the time origin t0, which can be chosen for convenience; it is an arbitrary time that is within

or not far outside the span of observation times (t1 to tn) but it does not necessarily correspond to

the time of a specific observation. The observations occur at discrete times ti (measured from t0),

and for those times the trajectory can be expressed as Xi = X0 +V0ti + fix0, using the shorthand

Xi =X(ti), X0 =X(t0), V0 =V(t0), and fi =f(ti).

The third term represents any curvature in the observer’s path in the direction x0, which, if a

geocentric coordinate system is used and f(t)<0, is toward the center of the Earth. Thus, the third

term could represent the gravitational acceleration of an object in Earth orbit or, for an observer

traveling on or near the Earth’s surface, the local curvature of the geoid. If the third term is written

as fiX0/X0, where X0 = |X0|, then Xi = X0

(
1 + fi

X0

)
+ V0ti. The curvature term is assumed

small compared to the other terms, i.e., that fi � X0 and fi � |V0|∆t, where ∆t = |tn − t1| is

the span of time covered by the observations. It is also assumed that fi/X0 (which is small) can

be considered known to sufficient accuracy. The calculation of fi can be done in a number of ways

and is not essential to the method; see next section.

The equation below represents a least-squares solution to the navigation problem; specifically,

it minimizes the sum D =
∑

i δ
2
i , where each δi represents the distance of line of position i, defined

by the observation taken at time ti, from Xi, the computed position of the observer at the same

instant. The geometric interpretation of the solution is similar to that for the fixed-observer case,

but less intuitive. The LOPs do not converge to define a small volume of space; rather, they

converge around the observer’s computed path in such a way that at the time of each observation,

the observer is as close as he can be to its LOP — given the simple model we are adopting for his

motion and the fact that the closeness criterion (square of the distance) is assessed in the aggregate
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for all the LOPs.

The solution algorithm, derived elsewhere [13] is:

[
(di1

2 − 1)β2
i

] [
di1di2β

2
i

] [
di1di3β

2
i

] [
(di1

2 − 1)tiβi

]
[di1di2tiβi] [di1di3tiβi][

di2di1β
2
i

] [
(1− di2

2)β2
i

] [
di2di3β

2
i

]
[di2di1tiβi]

[
(di2

2 − 1)tiβi

]
[di2di3tiβi][

di3di1β
2
i

] [
di3di2β

2
i

] [
(di3

2 − 1)β2
i

]
[di3di1tiβi] [di3di2tiβi]

[
(di3

2 − 1)tiβi

][
(di1

2 − 1)tiβi

]
[di1di2tiβi] [di1di3tiβi]

[
(di1

2 − 1)t2i
] [

di1di2t
2
i

] [
di1di3t

2
i

]
[di2di1tiβi]

[
(di2

2 − 1)tiβi

]
[di2di3tiβi]

[
di2di1t

2
i

] [
(di2

2 − 1)t2i
] [

di2di3t
2
i

]
[di3di1tiβi] [di3di2tiβi]

[
(di3

2 − 1)tiβi

] [
di3di1t

2
i

] [
di3di2t

2
i

] [
(di3

2 − 1)t2i
]





x1

x2

x3

v1

v2

v3



=



[−(Pi1 − (di ·Pi)di1)βi]

[−(Pi2 − (di ·Pi)di2)βi]

[−(Pi3 − (di ·Pi)di3)βi]

[−(Pi1 − (di ·Pi)di1)ti]

[−(Pi2 − (di ·Pi)di2)ti]

[−(Pi3 − (di ·Pi)di3)ti]


(3)

where, again, the square brackets indicate a summation over all n observations, and βi = (1 + fi
X0

).

The column vector on the left side represents the unknown navigation state, U, at time t0: U =

(X0,V0) = (x1, x2, x3, v1, v2, v3). The remaining notation is the same as for Equation (1). Note

that the time ti of each observation, measured from t0, appears explicitly in some of the terms.

The time t0 can be chosen to be at the end of the series of observations, so that Equation (3) can

provide a near real-time estimate of position and velocity.

Equation (3) is of the form A U = Q, where U and Q are column 6-vectors and A is a 6×6 matrix.

The solution is U = A−1 Q, where A−1 is the inverse of A and represents the unscaled covariance

matrix of the solution.

For straight-line motion (no curvature term), βi=1 for all i. Also, if the observer is stationary,

then ti can be considered to be 0 for all i since time is measured from when the observer was at X0

(the problem then is three-dimensional rather than six-dimensional). In that case, (3) reduces to

(1). If the observer is moving but the velocity vector is known, the position vector can be obtained

from the first three rows on the left side of (3) (actually, any three rows) if the terms involving v1,

v2, and v3 are moved to the right side.

If the observations have different uncertainties, then the algorithm should minimize the weighted

sum Dw =
∑

i(wiδi)2, where wi is the dimensionless weight of observation i. The weight wi = σ/σi
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is the ratio of the average uncertainty of all the observations, σ, to the uncertainty of the particular

observation, σi. (Often it is desirable that
∑
w2

i = n, so that 1/σ2 = 1
n

∑
(1/σ2

i ).) The uncertainty

of an observation is usually dominated by the angular measures that define the vector di for the

observation (see section below on random errors). Including observational weights is accomplished

simply by including the extra factor w2
i in each of the sums in (3).

CURVATURE TERM

The third term in our motion model X(t) = X(t0) + V0t + f(t)x0 describes the curvature of the

path in the direction x0, which, for a geocentric coordinate system and f(t) < 0, will be toward

the center of the Earth. The term’s value at the time of observation i is fi = f(ti); the term can

then be written
(

fi
X0

)
X0 and we have assumed that fi/X0 is a known (dimensionless) quantity.

For short tracks on the surface of the Earth, fi/X0 is small: for example, even for a 100-km track,

fi = −0.8 km, so fi/X0 ≈ 10−4.

In many cases, the curvature term may be unnecessary. It would be important for navigation

applications on or near the surface of the Earth in which observations are collected over a track

that may extend to some tens of kilometers and navigational accuracies of better than 100 meters

are expected. It is used in place of an acceleration term in the solution, which would require three

more unknowns (and at least two more observations) and which would, in many cases, be poorly

determined because of its smallness compared to observational error.

For most purposes the magnitude of the term can be well represented by the parabolic approx-

imation

fi = −1
2

(vti)2

R
or

fi

X0
= −1

2
(vti)2

RX0
= −1

2

(
vti
X0

)2

︸ ︷︷ ︸
if R=X0

(4)

where R is the radius of curvature of the path, v = |V0| is the speed of motion, and vti � R.

The length vti is the distance traveled from the reference point (where t=0 and X=X0) to the

position of observation i, taken at time ti. For an observer in a circular Earth orbit, R = X0 and

v2 = GM/X0, where GM is the geocentric gravitational constant, but we will not consider the

orbital case further here. For an observer on or near the surface of the Earth, a great-circle course

is implied. For such an observer, if we consider the Earth to be a sphere, R = X0 = a+ h, where a



Angles-Only Navigation: Position and Velocity Solution 12

is the radius of the Earth and h is the height above sea level. Note that some pre-solution estimate

of speed is necessary for the evaluation of the term.

On the real, oblate Earth, things are a bit more complicated, because R 6= X0, that is, the

local radius of curvature is not the same as the local geocentric distance, and both vary from

place to place. Formulas for radius of curvature and distance to the geocenter are given in any

elementary geodesy text, for example, [15, 12, 16]. However, in most cases, the spherical-Earth

approximation will work sufficiently well; for high-accuracy or extended-track applications, only

very crude estimates of the observer’s position, direction, and speed are needed to evaluate the

term. The curvature term is discussed more fully in [13], which provides estimates of its sensitivity

to assumed location and speed.

PROPAGATION OF RANDOM ERRORS

As an application of least-squares, the algorithm represented by Equation (3) assumes that the

observations are uncorrelated and that they have normally distributed random errors. System-

atic errors are assumed to be insignificant. The effects of some common systematic errors are

treated in the next section. This section discusses the origin and propagation of random errors of

measurement.

The algorithm given above differs from most least-squares applications in two important ways.

First, the quantity that is minimized in a sum-of-squares sense is a euclidean distance in 3-space

that is related to, but is not itself, a measured quantity for each observation. These distances (the

δi’s) will have a statistical scatter that reflects not just the errors of measurement but also the

errors in the predetermined coordinates of the objects observed. Second, the method does not rely

on a linearization around an approximately known set of parameters. The solved-for parameters

are the position and velocity vector components, not corrections to the components of assumed

vectors. Yet, despite the fact that no conditional (observation) equations have been defined, most

aspects of least-squares analysis still apply.

For example, as previously stated, the inverse of the 6×6 matrix in Equation (3), A−1, is the

unscaled covarience matrix of the solution. We can use it in the conventional way to obtain the

formal uncertainties of the 6 solved-for parameters (x1, x2, x3, v1, v2, v3) and the parameter
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correlation matrix:

If A′ =
( D

2n− 6

)
A−1, then



σ2
i = A′ii

σ2
ij = A′ij

cij = A′ij/(σiσj)

(5)

where σ2
i is the formal variance of parameter i (i=1 to 6), σ2

ij is the formal covariance of parameters

i and j, and cij is the correlation (–1 to +1) between parameters i and j. We could, then, use the

variances and covariances of x1, x2, and x3 to form an error ellipsoid in 3-space that represents the

uncertainties in the solution for X0, or propagate the formal errors to any other position on the

observer’s track to see how the error ellipsoid changes with time.

The factor D/(2n − 6) represents the variance of the least-squares fit; i.e., a measure of the

scatter in the post-solution residuals. We have D =
∑

i δ
2
i , where each δi is the distance between

the LOP of observation i and the computed position of the observer at the same time. The quantity

2n−6 represents the number of degrees of freedom in the solution and reflects the fact that each of

the n observations is two-dimensional, i.e., it consists of two independent angular measurements.

Each δi in the sum can be calculated using

δi = |di×(Pi −Xi)| (6)

which is the minimum distance from point Xi to its associated LOP, Pi + rdi. The symbols have

the same meanings as in Equations (1) and (3), and Xi = X0

(
1 + fi

X0

)
+ V0ti, with X0 and V0

taken from the solution. (Equation (6) is adopted from [14].)

The post-solution residuals can also be considered to be vector quantities:

δi = di×(Pi −Xi)×di (7)

with the vector δi extending from the point Xi to the nearest point on its associated LOP. The

length of the vector is δi (since |di| = 1). Considered as a time series, the vectors δi contain all the

information on the influence of the observations on the solution, with the effect of each observation

proportional to δ2
i (or, if weighted, (wiδi)2 ).

Prior to a solution it is easy to obtain an estimate of its accuracy by considering, in general

terms, the geometry of the LOPs. For this purpose, we assume that all the observations are of
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similar quality and are well distributed in direction and time — that is, that there is little or no

geometric dilution of precision. As shown in Figure 1, each LOP is defined by both its “anchor”

in 3-space, a point at the assumed coordinates of the object observed, and its direction, defined by

the observation itself. Given that the equation of the LOP is X = P + r d (where r is a scalar of

arbitrary value), the statistical uncertainties at a distance r from the object are related by

σ2
X = σ2

P + r2 σ2
d (8)

where each σ is the root-sum-square of the uncertainties in the respective vector components. Since

d is always a unit vector, σd represents an angular uncertainty in radians, which is developed below;

we anticipate that it will be closely related to the centroiding error of the imaging system. The first

term on the right represents the average radius of an ellipsoid of uncertainty around the assumed

position of the observed object due to the likely errors in its coordinates. The r-term represents

a cone of expanding uncertainty with its axis along d, its apex at the assumed position of the

object (where r=0), and its apex angle equal to 2σd. The LOP could therefore plausibly be any

line originating within the ellipsoid of uncertainty with a direction parallel to any line within the

cone of uncertainty. See Figure 2.

LO
P

Ellipsoid of uncertainty
due to likely errors in
assumed coordinates of
object

Possible position
of observer

δ

Cone of uncertainty
due to likely errors in
measured direction to
object

Volume of uncertainty
from all likely errors

Assumed position
of object

r
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Fig. 2 — Geometry of error propagation along a line of position. Statistically, the

observer’s position should lie within the LOP’s volume of uncertainty.

We expect the observer to be somewhere within, or not far outside of, each LOP’s volume of

uncertainty. So for observation i, we have δi ≈ σX(ri), for which we need at least a crude estimate

of ri, the distance of the object from the observer. If the values of the δi’s computed this way

are similar — which would generally be the case if the distances to the observed objects were not

too different — then a typical δi, say δ, will be a predictor of the scatter in the post-fit residuals.

That is, δ2 should approximately equal the variance of the fit. We therefore have a simple way to

anticipate the accuracy that can be obtained by various observing schemes.

The one remaining piece of unfinished business is determining the value of σd to use in Equa-

tion (8). If the measurement of angles were absolute, that is, obtained from the pointing of the

imaging system (say, from shaft encoders on the axes), then σd would simply be the larger of the

mechanical pointing resolution or the image resolution. However, such a system would require a

transformation of the angular measurements from an instrumental system to a geodetic system

before Equation (3) could be applied. Generally, that transformation is unknown. The advan-

tage of differential measurements — that is, nearby points measured with respect to more distant

ones within a limited field of view — is that they avoid the problem of the unknown instrumental

attitude. The attitude of the instrument need not even be measured.

For differential measurements, the geometry of how the observation vector is formed is shown

in Figure 3. The figure shows the effect of finite imaging resolution, which creates an ambiguity

in which vector to choose. That ambiguity defines the angular uncertainty of the observation, σd,

used in Equation (8). The geometry yields the result that σd = ∆θ
(

1
2 + r

r′−r

)
, where ∆θ is the

imaging resolution, and r and r′ are the distances to the near and far objects, respectively (we

assume that the far objects have some typical, or at least minimum, distance). We see that as

r′ →∞, σd → ∆θ/2, so that very distant background objects are preferred. Note that in any case

we require that the background objects be significantly behind those in the foreground so that the

term r
r′−r does not blow up. If a moving observer waits for a pre-selected foreground object to

appear to line up with a pre-selected background object, the situation is similar. The diagram for

this case is somewhat different but the expression for σd that we obtain is the same.
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Possible foreground
objects

Δθ (Imaging resolution)
Observer

Possible observation
vectors  (not yet normalized)

2σd = ambiguity in observation direction
      = LOP direction uncertainty × 2

r
r´

Possible background
objects

2σd

Fig. 3 — Possible observation vectors for foreground objects viewed against back-

ground objects, at distances from the observer of r and r′, respectively. (Not all

possible vectors are shown.) The imaging system cannot distinguish among objects

in the gray cone, defined by the image resolution ∆θ. The figure shows a spread of

possible observation vector directions (= LOP directions) within an angle 2σd.

EFFECTS OF DEVIATIONS FROM THE IDEAL TRACK

Equation (3) is based on an observer trajectory that curves only toward the center of the Earth,

that is, the path over ground is a great circle. Clearly, this ideal will seldom play out in practice,

and it is important to evaluate the consequences of deviations from the modeled motion.

First, both ships and aircraft often follow rhumb lines rather than great circle routes; over long

distances, a great circle route may be approximated by a series of rhumb lines. A rhumb line

(loxodrome; a track of constant azimuth) is a straight line on a Mercator map, but it generally has

curvatures in two directions when viewed in a 3-D coordinate system. Curvature in the horizontal
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plane has not been accounted for in the development here. Rhumb lines diverge most rapidly from

great circles for east-west tracks (except for latitudes within a few degrees of the equator, where the

divergence is small in any case) with the effect being greater at higher latitudes. At 40◦ latitude, the

maximum horizontal difference between a rhumb line and a great circle is 41 m over a 50 km track

and 164 m over a 100 km track, if the end points are the same. Except for possible applications

involving high-speed aircraft, then, the systematic error of following a constant heading rather than

a great-circle route would not appear to be a major issue. Other systematic shifts in the vehicle’s

track are likely to be more important.

For example, it is worthwhile investigating how the algorithm responds to low-grade accelera-

tions that might result from a systematic change in wind or current during the time period covered

by the observations. For these cases, the results of [? ] provide some insight. The appendix of

that paper develops the general case of a least-squares fit of a linear motion model to position

observations when the actual motion involves a weak acceleration. The paper provides expressions

for the systematic errors of the solved-for parameters as well as for the statistics of the residuals.

Although the type of observations and the form of the solution is different in [? ] from what is

considered here, the geometry is similar enough to provide usable estimates of the magnitude of the

effects. In fact, numerical experiments with the Equation (3) algorithm, applied to an accelerating

vehicle, show that the algorithm does mimic the fit of the straight line to the curved path described

in [? ].

For reasonable cases the solution adjusts itself such that the distance between the solution track

and true track, over the time period covered by the observations, does not increase dramatically

when an acceleration is introduced; the aforementioned paper shows that the maximum such dif-

ference will increase by about a∆t2/12, where a is the acceleration and ∆t = tn − t1 is the span

of observation times. The RMS difference increases by somewhat less than half this amount. For

example, a ship traveling at 50 km/h (27 kn) will cover 8.3 km in 10 minutes; a 100 km/h2 ac-

celeration will shift the track by 1.4 km over the same time. (This acceleration, approximately

1×10−3 g, is equivalent to moving into a 9 kn current during that time.) Numerical simulations of

this scenario (among others) were computed, both with and without acceleration, all with great-

circle track solutions formed according to Equation (3) based on ten noisy artificial data points. In
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one typical case, the maximum difference between the solution and true tracks, over the course of

the observations, increased by 0.20 km (from 0.29 to 0.49 km) and the RMS difference increased

by 0.07 km (from 0.19 to 0.26 km) when the acceleration was introduced. The expressions in [? ]

predicted increases of 0.23 and 0.10 km, respectively.

Although the past positions computed from the solution were only moderately degraded, relative

to the errors from the observations alone, the solved-for velocity does not provide an accurate

prediction of the future track, whether it is accelerated or not. In the solution with acceleration,

the difference between the solved-for velocity — essentially, the average velocity over the 10-minute

period of the observations — and the instantaneous velocity at either endpoint was 8.1 km/h (the

prediction was 8.3 km/h), that is, a 17% error, with the error vector parallel to the direction of the

acceleration. Overall, if the solution were used to extrapolate the observer’s position 10 minutes

beyond the span of observations, we should expect a systematic error of about 1.6 km if the future

motion was unaccelerated and 3.0 km if the acceleration continued. On the other hand, if both the

acceleration and the observations continue, a set of rolling solutions (i.e., using observations within

a moving window of time) could provide the acceleration from the continuous change in velocity

from one solution to the next.

We can construct approximate formulas for the applicability of the algorithm in the presence

of acceleration, based on either of two criteria. We use the expressions in [? ] that show that

at the beginning and end of the observation interval, which spans time ∆t, the solution’s velocity

will differ from the observer’s instantaneous velocity by a∆t/2 and the systematic error in position

there is a∆t2/12. The uncertainty of the solution projected to time t is σ(t) =
√
σ2

x + (σv(t− t0))2,

where σx and σv are the formal uncertainties in position and velocity, respectively (their covarience

is ignored here), and t0 is the epoch chosen for the solution parameters, which we assume to be

at the end of the observations. Then the expected position errors e at times t0 and t0 + ∆t are,

respectively,

e(t0) =
1
12
a∆t2 + σx and e(t0 + ∆t) =

7
12
a∆t2 +

√
σ2

x + (σv∆t)2 (9)

In the latter case, we have assumed that the acceleration does not continue beyond the end of the

observations; if the acceleration continues, the fraction 7
12 would be replaced by 13

12 . If emax is the
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maximum allowable navigation error, then using the above expressions, we find that as long as

a < 12
(emax − σx)

∆t2
or a < m

(
emax −

√
σ2

x + (σv∆t)2
)

∆t2
(10)

the solution will be acceptable. “Acceptable” means, in the first case, that the expected position

error at the end of the observation interval (at t0) will be less than emax, and in the second case

that the solution could be projected another interval ∆t into the future (to t0+∆t) with error less

than emax. In the latter expression, m=12/13 if the acceleration continues and m=12/7 if it does

not. In the example referred to in the preceding paragraphs, σx=0.25 km and σv=2.24 km/h for

the solution with acceleration, and ∆t=1/6 h. If we assume that the acceleration continues after

the observations (after t0), so that m=12/13, and we set emax=1 km, then the acceleration a would

have to be less than 18.3 km/h2 (equivalent to moving into a 1.7 kn current over 10 minutes) for

the solution to be acceptable based on its predictive ability beyond the observations. But if only

the positional accuracy at the end of the observation span were the criterion, the acceleration could

be as high as 405 km/h2, i.e., over 20 times greater, for the solution to be acceptable.

Of course, the real world is more complicated. In most cases we would have little information

on the magnitude of any such acceleration, and it is unlikely to be constant for extended periods

of time anyway. The actual track of the vehicle will in general be subject to both systematic and

random-walk shifts due to changing wind or currents or steering or propulsion variations. The

navigation solution described here, although computed for the specific instant t0, really reflects

a kind of average track of the vehicle during the observations. In that way it differs from near-

instantaneous determinations of position and velocity such as from GPS. The accuracy of dead-

reckoning predictions based on a single navigation solution of either kind will vary widely depending

on conditions. Although the Equation (3) algorithm has limited predictive ability when a constant

acceleration is present, it would do well if the track variations were stochastic or nearly so and

enough observations were used to provide an unbiased sample.

THE USE OF SATELLITE OBSERVATIONS

As was mentioned in the second section of this paper, a specific proposed application would use

optical or near-infrared measurements of the angular positions of satellites observed against a star
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background. Such a system could provide a standalone backup against jamming of GPS signals,

although likely of lesser accuracy. GPS satellites present point-like images (about 0.1 arcsecond

across, less than the atmospheric “seeing” disk) in the visual magnitude range of 11–14, depending

on the Sun-satellite-observer angle [17]. The main challenge in obtaining such observations is the

large difference in the angular motions of the GPS satellites and the background stars, which

can exceed 30 arcsecond/s (0.5◦/minute) as seen from the surface of the Earth. Nevertheless,

the satellites are observable in small telescopes with electronic imagers. Image timing accurate

to about a millisecond in UTC is required. Since the observed satellites are at finite distances,

with geocentric coordinates known to a meter or better — readily available on the Internet — a

straightforward triangulation method, such as the one presented in this paper, is feasible. Other

satellites with accurately known orbits (e.g., geosynchronous communications satellites, or low-

Earth-orbit geodetic satellites) might also serve as observational targets.

Each satellite observation would be expressed in some sort of “space fixed” celestial coordinate

system while the satellite ephemeris position would most likely be expressed in a geodetic system

that rotates with the Earth; a transformation of the observational data from the celestial to the

terrestrial system will be required. In practice, there are two fundamental coordinate systems that

are most appropriate for this problem: the International Terrestrial Reference System (ITRS) and

the Geocentric Celestial Reference System (GCRS). The ITRS is a 3-D geocentric system that

rotates with the Earth, so, loosely speaking, it is a “crust-fixed” system; more precisely, its axes

have no net rotation with respect to the ensemble of ITRS defining stations. Geodetic positions

in the ITRS coincide (within several cm) with positions measured with respect to the the WGS-84

ellipsoid, e.g., from GPS. The ITRS is also referred to in GPS literature as the Earth-centered

Earth-fixed (ECEF) system. The GCRS is the geocentric equivalent of the International Celestial

Reference System (ICRS), which has its origin at the solar system barycenter and which is used for

modern star catalogs and planetary ephemerides. The GCRS axes have no net rotation with respect

to distant objects in the universe. The GCRS is a natural system for expressing the positions of

stars as they would be seen by an observer on or near the Earth at a specific time. Since both the

ITRS and GCRS are geocentric systems, the transformation between them consists of a series of
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rotation matrices:

rGCRS = B P N S W rITRS (11)

where rITRS is a vector in the terrestrial system and rGCRS is the corresponding vector in the celestial

system. The matrices listed account for, from right to left, polar motion, sidereal time, nutation,

precession, and a constant “frame bias”. These coordinate systems and the transformations that

link them are described more fully in [18] and there are several software packages available on the

web for carrying out this transformation or its inverse. This transformation forms the link between

each satellite observation (right ascension and declination with respect to the GCRS) and the

ephemeris position of the satellite at the time of the observation (X,Y,Z with respect to the ITRS).

Actually, the ephemeris position of the satellite should be obtained for the time of observation

minus the light-time to the GPS satellite (≈0.07 s). The light-time calculation can be fairly crude

and could be based on the the distance of the satellite from the geocenter (≈ 26, 600 km) and its

observed zenith angle; alternatively, an approximate observer location and the satellite ephemeris

could be used. (An error of 750 km in the light travel distance results in only a 10 m error in the

satellite’s position.)

If the image centroiding errors are, say, 1-2 arcsecond, then, using σd = ∆θ/2 = 5µrad, σP =

1 m, and r ≈ 23, 000 km, the expected scatter in the triangulation residuals, using Equation (8),

would be around 115 m. However, tracking a satellite over just a few minutes could provide a large

number of independent observations, and the uncertainty of the position solution could conceivably

be reduced to a few tens of meters. An advantage of using GPS satellites is that the constellation is

designed to provide good ranging geometry (i.e., to minimize GDOP), so usually the observational

geometry would also be favorable for the kind of triangulation described in this paper.

Unlike traditional celestial navigation — where the observed stars are assumed to be infinitely

distant, and triangulation is therefore not possible — the satellite scheme does not require any

reference to the local vertical. This is important for moving observers, where a precise determination

of the local vertical cannot be made using direct onboard (“lab”) measurements, since the gravity

and acceleration vectors are inseparable. (Inertial navigation systems can provide a computed

estimate of the local vertical.) The horizon, which ideally defines an external plane orthogonal to the

local vertical, is often not visible or accurately measurable. Even when clearly visible and sharply
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defined, the horizon is actually a warped circle, at the level of precision needed, due to direction-

dependent low-level atmospheric refraction. The satellite scheme circumvents the local vertical or

horizon problem; additionally, because it uses small-field measurements from an electronic image,

there is no need for precise large-angle calibration. Thus, for moving observers that require a

supplement or backup to ordinary radio-based GPS navigation, angular measurements of GPS

satellites with respect to the stars have several fundamental advantages over traditional celestial

navigation, even if the latter is automated.

Additionally, the satellites, like the stars, provide an absolute attitude reference. If the obser-

vations used for the position and velocity solution can be expressed in instrumental coordinates,

then we have two bases for each such vector: an external reference system (either the ITRS or the

GCRS) and the instrumental reference system. That is the information needed to solve “Wahba’s

problem” [19], about which there is an extensive literature and software base, and determine the

attitude of the instrument.

NUMERICAL SIMULATIONS

A software package was created to test the mathematics presented in this paper and to explore the

properties of the solutions. The software computes the track of a hypothetical vehicle across the

surface of the Earth, given an initial date and time and values for latitude, longitude, course, and

speed; either a great-circle or a rhumb-line track can be selected. This track is “truth”. The user

can specify a time span within which a selected number of artificial observations will be created.

For each observation, the software identifies a target object, obtains its coordinates, and computes

an observation vector, with the target coordinates and “observed” direction subject to random

errors. The ensemble of observation times, target coordinates, and observation vectors is then sent

to the routine that sets up and solves Equation (3). The solution yields the vehicle’s position (at a

pre-selected time) and velocity in geocentric rectangular coordinates, which can be transformed into

latitude, longitude, height, course, speed, and rate of change of height. This allows the computation

of a “solution track”, which is compared to the “true track” for the span of time covered by the

observations; the differences are sampled at the times of the observations. For simplicity, a spherical

Earth with a radius of 6378.137 km was assumed for all the tests reported here. A computer script
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was written that allowed large numbers of solutions to be formed and compared for a given test

track, using a Monte-Carlo-type scheme. Many different solution scenarios were tested this way.

In computing the artificial observations, the software attempts to spread the observation times

more or less evenly across the specified time span (say, a half-hour), although the exact times

chosen are random. For each time chosen, the software checks the elevation angle and azimuth

of GPS satellites as they would appear from the vehicle at that time. Actual GPS positions are

used, derived from NORAD two-line orbital elements propagated to the time of observation using

SPACETRACK software [20]. Any satellite to be “observed” must be at least 30 degrees above the

horizon, and the software attempts to select a satellite that significantly differs in azimuth from

those recently observed.

Each observation vector — that is, the unit vector that defines the direction of the LOP —

is computed from the difference between the GPS position and the vehicle position for the same

instant, both expressed in an ITRF-like rectangular coordinate system that rotates with the Earth

(i.e., an ECEF system). No attempt is made to simulate an actual observing system, such as a

telescopic CCD camera, or to determine which stars the satellite would be seen against. Light-

time is neglected, as are effects such as refraction and aberration that would be the same for the

satellite and the background stars. However, each observation is modified by adding a random error

in angle, in a random direction. The magnitudes of the angular errors are normally distributed

with a standard deviation (in arcseconds) provided by the user. Weights are not assigned to the

observations.

The satellite positions1 are also subject to random position errors. Just as for the observa-

tion errors, the user provides a standard deviation (in kilometers) for the satellite position errors,

which are then normally distributed in each of three dimensions. (Real satellite position errors are

generally higher in the along-track than cross-track directions.)

A few generalities about the solutions: When the user-selected observational errors (standard

deviations) are set to zero, the solutions are for practical purposes exact for great-circle tracks

of a few tens of kilometers long, as expected. That is, the latitude, longitude, course, and speed
1In a real-world application, satellite positions computed by SPACETRACK, based on two-line orbital elements,

would not be nearly accurate enough for this purpose. GPS positions with errors of a meter or less would have to be

obtained from International GPS Service data sets distributed daily on the IGS web site.
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obtained from the solution’s position and velocity vectors are essentially identical to those that

describe the true track for the same instant — and along the solution track, the positional errors

are less than one meter compared to the true track. As the time span, hence the distance, over

which observations are obtained increases, the errors increase, consistent with the predictions for

the error in the curvature term described above (see Section 6 of [13] for a more detailed quantitative

analysis). Most of these solutions used the correct vehicle speed v in the curvature term. However,

even if v has a relatively large error (say, 30%), it is only necessary to solve Equation (3) twice,

using, the second time, the value of v obtained from the velocity vector from the first solution.

Tests showed that the second solution is essentially identical to a single solution with v known

exactly.

Example: A typical solution for a ship’s rhumb-line track is shown in Tables 1, 2, and 3. The

ship was hypothesized to be moving at a constant speed of 50 km/h (27 kn) along a course 60◦ from

true north. At 2008 February 19 at 04:00 UTC, the ship’s position was 50◦ west longitude, 40◦ north

latitude. Eight artificial observations of various GPS satellites were computed for times distributed

over the previous half-hour, corresponding to a 25-km track at the ship’s speed. The standard

deviation of the observational errors was set at 1 arcsecond (5 µrad) and the standard deviation of

the GPS coordinates was set at 5 m. Equation (8) predicts a scatter in the residuals of just over

100 m for this case, most of which is from the angular uncertainty of the observations. The solution

was computed for 04:00 UTC. As with all solutions to (3), only three data elements were involved

for each observation: the time, the observed satellite’s direction vector, and the observed satellite’s

geocentric position vector. Both vectors were expressed in ITRF-like rectangular coordinates that

rotate with the Earth. (In Table 1, the range to each satellite is shown for information only and

was not used in the solution.) Note that three observations of PRN 01 were selected as it passed

nearly overhead; although the observing geometry is similar in each case, they sample the ship’s

position at different times.
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Table 1 Hypothetical True Track and Artficial Observations

UTC Time Distance Latitude Longitude Obs # Sat ID Altitude Azimuth Range

km ◦ ◦ ◦ ◦ km

03:31:21 –23.9 +39.89 –50.24 1 PRN 06 32.3 146.1 22635

03:39:27 –17.1 +39.92 –50.17 2 PRN 01 84.9 264.9 20315

03:45:57 –11.7 +39.95 –50.12 3 PRN 30 40.8 49.6 21678

03:47:43 –10.2 +39.95 –50.10 4 PRN 14 54.1 150.6 21106

03:51:05 – 7.4 +39.97 –50.08 5 PRN 01 83.1 208.0 20315

03:52:37 – 6.2 +39.97 –50.06 6 PRN 31 67.0 334.5 20742

03:57:09 – 2.4 +39.99 –50.02 7 PRN 29 42.0 90.0 21913

03:59:15 – 0.6 +40.00 –50.01 8 PRN 01 79.6 191.8 20348

04:00:00 0.0 +40.00 -50.00

The solution parameters are given in Table 2. The top half of the table gives the position and

velocity vectors expressed in geocentric rectangular coordinates, directly from the solution. The

lower half of the table converts that data to geodetic coordinates on the spherical Earth model

used. The last column at lower right is the rate of change of height.

Table 2 Solution for Ship’s Position & Velocity at 04:00 UTC

X Y Z Ẋ Ẏ Ż

km km km km/h km/h km/h

Solution + 3140.644 –3742.714 +4099.755 +22.879 +40.496 +19.031

Truth + 3140.619 –3742.844 +4099.787 +22.841 +40.144 +19.151

Difference +0.025 +0.131 –0.032 +0.038 +0.352 –0.120

Formal Mean Error 0.098 0.078 0.082 0.436 0.311 0.273

Latitude Longitude Height Course Speed ḣ

◦ ◦ km ◦ km/h km/h

Solution +40.00026 –49.99879 –0.085 60.0814 50.254 –0.264

Truth +40.00000 –50.00000 0.000 60.0000 50.000 0.000

Difference +0.00026 +0.00121 –0.085 +0.0814 +0.254 –0.264
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Table 3 shows the post-solution residuals for each observation. The residuals on the left side

of the table indicate the distance between the solution track and the true track at the time of

each observation; dRT is the total distance between tracks, while dNT , dET , and dUT are the

components of that distance in the topocentric directions north, east, and up. The run of dRT

values indicates the overall position error of the solution. The residuals on the right side of the

table are similar, but they indicate the distance between the solution track and the line of position

defined by each observation. As expected, the line-of-position residuals, which are the basis for the

solution, appear randomly distributed whereas the track residuals show systematic trends. It is the

RMS of the line-of-position residuals that are predicted by (8). Note that the dUT track residuals

show the effect of small, non-zero values for the height and height-rate parameters; no attempt was

made to constrain the solution’s track to the surface of the Earth. The dNT and dET residuals

include the rhumb-line vs. great-circle errors, although they are small (< 10 m) for this case.

Table 3 Post-Solution Residuals

Obs # Distance dRT dNT dET dUT dRL dNL dEL dUL

km km km km km km km km km

1 –23.9 0.051 –0.030 –0.003 +0.041 0.044 +0.025 –0.004 +0.036

2 –17.1 0.025 –0.008 +0.024 +0.006 0.132 –0.118 –0.057 –0.006

3 –11.7 0.053 +0.007 +0.047 –0.023 0.101 +0.088 –0.029 –0.041

4 –10.2 0.063 +0.011 +0.054 –0.031 0.182 +0.047 +0.172 –0.031

5 – 7.4 0.082 +0.017 +0.066 –0.046 0.049 –0.017 +0.046 +0.001

6 – 6.2 0.092 +0.020 +0.073 –0.052 0.093 +0.006 –0.091 –0.019

7 – 2.4 0.119 +0.026 +0.091 –0.072 0.097 +0.025 –0.063 +0.069

8 – 0.6 0.132 +0.029 +0.100 –0.082 0.061 –0.055 +0.024 –0.009

RMS 0.090 0.111

One hundred solutions for the same hypothetical rhumb-line track were computed, each with

either 6, 7, 8, or 9 observations spread over the same half-hour (25 solutions each). The median

position error (distance dRT ) was 70 meters, and 74% of the position errors were less than 100 m.

The distribution of the position errors appeared Poisson-like, with only one error out of 750 samples
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over 300 m (387 m) and just 25 (3%) over 200 m. In these tests, there was only a very slight hint

that the solutions with the greater number of observations were better overall than those with

fewer; generally the solution-to-solution variations dominated the statistics. Other numerical tests

indicated that significantly increasing the number of observations does have a measurable effect in

reducing the track errors.

CONCLUSION

A unique, closed-form algorithm has been presented that provides a 3-D navigational solution for

position and velocity given a sequence of angles-only measurements. The algorithm includes a

correction term for the curvature of the Earth, so that observations can be collected over extended

tracks. The kind of measurements proposed for use with this algorithm are those in which the

apparent positions of foreground objects are imaged and measured against background objects,

and coordinates in some well defined reference system (or systems) are known for both. This

represents a large class of applications, which includes the observation of satellites with accurate

ephemerides, such as GPS, observed against a star background.

Numerical simulations have shown the algorithm to be mathematically correct and the solutions

robust, even when the number of observations is small. The solutions provide timely navigation

information at a useful level of accuracy for satellite-observing scenarios that are realistic and based

on current instrumentation capabilities and data availability.
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